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Recent developments in speech recognition make it feasible to apply the technology to study vocal
behavior. The present study illustrates the use of this technology to establish functional stimulus
classes. Eight students were taught to say nonsense words in the presence of arbitrarily assigned sets
of symbols consistent with three three-member experimenter-defined stimulus classes. Computer-
controlled speech-recognition software was used to record, analyze, and differentially reinforce vocal
responses. When the stimulus classes were established, students were taught to say a new nonsense
word in the presence of one member of each stimulus class. Transfer of function was tested subse-
quently to determine if the novel stimulus names transferred to the remaining stimulus class mem-
bers. Most subjects required two iterations of the training and testing procedures before transfer
occurred. The data illustrate the usefulness of recording vocal behavior during stimulus control
procedures and demonstrate the use of speech-recognition technology. The paper also describes the
current state of speech-recognition technology and suggests several other areas of research that
might benefit from using vocal behavior as its primary datum.
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The experimental analysis of human be-
havior continues to evolve with advancements
in research methods and instrumentation.
Technological advances, particularly those in-
volving computer hardware and software,
have led to improvements in experimental
design and data-recording procedures.
Speech recognition is one technology that of-
fers the experimental analysis of behavior fur-
ther sophistication and new avenues for re-
search.

Speech recognition is not a new technolo-
gy. Considerable interest already has been di-
rected toward its practical uses, especially in
the workplace (see Milheim, 1993, for a re-
view). Because this interest has been driven
in large part by the promise of improved ef-
ficiency in human–computer interactions,
much of the interest has come from a human
factors or engineering perspective (e.g.,
Tucker & Jones, 1991). There has been lim-
ited application of speech recognition to the
study of basic psychological processes or for
developing basic theories of learning.

Some basic behavior-analytic research dur-
ing the 1960s and 1970s, however, was direct-
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ed toward the analysis of vocal operants (see
review by Eshleman, 1991). These early stud-
ies most often were directed at schedule con-
trol of vocalizations with various species, in-
cluding humans (Cross & Lane, 1962;
Flanagan, Goldiamond, & Azrin, 1958; H.
Lane, 1960, 1964; H. Lane & Shinkman,
1963; Miller, 1968; Routh, 1969; Shearn,
Sprague, & Rosenzweig, 1961), dogs (Salzin-
ger, Waller, & Jackson, 1962), monkeys (Le-
ander, Milan, Jasper, & Heaton, 1972), cats
(Molliver, 1963), and mynah birds (Hake &
Mabry, 1979). Typically, these studies relied
on the development and use of voice-activat-
ed relays to record occurrences of vocal ut-
terances above preset thresholds of ampli-
tude. These devices were fairly accurate in the
detection of vocal utterances and could be
easily programmed to deliver consequences
contingent upon the occurrence, rate, or, at
best, the pitch of vocal responding. The early
speech-recognition systems, however, were
not without weaknesses. These systems were
plagued with recognition errors and required
expensive computers. Most limiting perhaps
was the inability of voice-activated relays to re-
cord the content of vocalizations and differ-
entially reinforce various specified topogra-
phies (Baron & Journey, 1989).

Baron and Journey (1989) devised a com-
puter-controlled speech-recognition system
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that automatically detected vocal responses
(up, down, left, and right) to study the rela-
tion between these vocal responses and cor-
responding joystick responses. Their results
indicated that speech recognition could be
used reliably to study vocal operants, allowing
precise comparisons to a manual response. As
remarkable as this system was for the tech-
nology available at the time, it was limited to
a few forms of responding and required a
combination of computer-controlled speech
recognition and voice-activated relays to re-
cord the responses and provide differential
consequences.

More recently, Manabe, Kawashima, and
Staddon (1995) used an elaborate signal-pro-
cessing apparatus that allowed accurate dis-
crimination of high- and low-frequency vocal-
izations by budgerigars, and even made
possible the differential reinforcement of vo-
calizations. Although this method was suc-
cessful for its intended purpose, the complex-
ity of the apparatus and its inability to detect
fine differences in the frequencies of vocali-
zations hinder its broader application.

Recent advances in audio-signal processing
and analysis have led to the development of
increasingly sophisticated and accurate
speech-recognition systems. Today, the limits
of speech recognition are related mainly to
the speed with which a computer system can
respond to an utterance. Along with more ef-
ficient speech-recognition algorithms, the fast
processors of modern computers have in-
creased recognition accuracy and speed, ex-
tended vocabulary size, and minimized train-
ing requirements. Given these recent
developments in speech-recognition technol-
ogy and increased affordability of high-speed
computers, the application of speech-recog-
nition technology to a broad range of human
behavioral research is now feasible.

The purpose of the current study was tech-
nological: to illustrate the potential of speech-
recognition technology for addressing issues
that concern behavioral researchers. We de-
scribe how speech-recognition technology
can be applied to study a kind of stimulus
class formation, functional equivalence, that
might be important for understanding as-
pects of verbal behavior. We also suggest sev-
eral other areas of research that might ben-
efit from using vocal behavior as its primary
datum. We also describe the current state of

speech-recognition software and offer some
practical suggestions for behavior analysts
who are interested in exploring this evolving
technology.

METHOD

Participants

Eight undergraduate college students (7 fe-
males and 1 male, ages 18 to 29 years) par-
ticipated. They were recruited through adver-
tisements placed on recruitment bulletin
boards located in the Department of Psy-
chology at West Virginia University. Students
had no prior experience with similar experi-
mental protocols. All were required to sign
an informed consent agreement that de-
scribed the general procedures. Students
were paid 1¢ for each correct response in a
block of trials in which an accuracy criterion
(approximately 90%) was met. If the accuracy
criterion was not met, no earnings were avail-
able for that block. In addition, students re-
ceived a $1 bonus per session for attending
all scheduled sessions. Sessions were con-
ducted 3 to 5 days per week and lasted ap-
proximately 50 min.

Apparatus and Stimuli

Daily sessions were conducted in a room
(2.2 m by 1.8 m) equipped with a table, a
chair, and the experimental apparatus. The
apparatus consisted of a microcomputer
equipped with an 33 MHz 486 processor, 16
MB RAM, an IBMt M-ACPA sound card, a
VGA color monitor, headphones, a VXIt
headset microphone, and a keyboard. Exper-
imental events and data collection were con-
trolled by C programming. Throughout ex-
perimental sessions, each student wore a
headset microphone and headphones for au-
ditory feedback and to help mask extraneous
noises.

The speech-recognition software used was
Dragon System’s Dragon VoiceToolsy Ver-
sion 1.01. This software can be programmed
to accompany any C or C11 computer pro-
gram such that function calls can be made to
a memory-recognition speech driver to pro-
cess speech input. (Programming routines
are available from the first author.) When a
speaker emits a vocal utterance 25 dB above
ambient noise levels, an analog signal from
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Fig. 1. Sets of stimuli and responses used to establish
functional stimulus classes.

the microphone is converted to digital format
in the audio board, and a digital representa-
tion of the vocal utterance is sent to the mem-
ory-resident speech driver. The digitized pat-
tern then is compared with word patterns
stored in memory from a specified vocabu-
lary of utterances sampled from the speaker.
The digitized patterns are sent to the speech
driver during an utterance so that processing
and recognition can occur simultaneously,
without waiting for the end of an utterance.
The speech driver requires a minimum of
100 ms between utterances. This procedure
allows speech input to be handled similarly
to keyboard input without appreciably slow-
ing the main computer program. In addition,
the speech-recognition driver allows measure-
ment of vocal utterance duration (in millisec-
onds) and amplitude (in decibels), as well as
providing a confidence level that represents
the degree to which a spoken word matches
the digitized pattern of that word.

Stimuli consisted of white symbols measur-
ing approximately 2 cm by 2 cm on a com-
puter screen (19 cm by 24 cm). Figure 1
shows the two sets of stimuli. On each trial,
one stimulus appeared in a blue box (3 cm
by 3 cm) at the center of the screen. Each
stimulus was assigned a number and a letter
for descriptive purposes only. Numbers cor-
responded with the experimenter-defined
stimulus classes, and the letters A, B, and C
designated stimulus class members. For ex-
ample, A1, B1, and C1 were designated as the
same functional class. Vocal responses used
for naming trials also were assigned numbers
that designated corresponding classes of stim-
uli. For example, Response 1 (GOX) was
used to establish the functional stimulus class
A1B1C1. Students S101, S103, S105, and S108
were trained with Stimulus Set 1 (top panel
of Figure 1), whereas Students S102, S104,
S106, and S107 were trained with Stimulus
Set 2 (middle panel).

Procedure

Speech-recognition training. Training oc-
curred in two stages. First, a sampling of each
nonsense word was recorded and saved as a
digitized pattern of the utterance. Students
were prompted to say out loud each of the
three nonsense words (e.g., GOX, TIF, and
JAS) five times in succession. The recorded
utterances were digitized and the speech pat-
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tern adapted and normalized to an individ-
ualized ‘‘speech model’’ for that word. At this
point in the training, recognition of the non-
sense words was fairly accurate; however, a
second training phase was conducted to en-
sure even greater accuracy. In this second
training phase, students were prompted to
say each nonsense word in random order,
one at a time. Each utterance was recorded,
digitized, and then compared to the speech
models created previously. This comparison
yielded software-generated ‘‘confidence’’ val-
ues (1 to 100) that indicate the degree to
which each utterance matched one or more
of the speech models for that student. Utter-
ances meeting a minimum confidence crite-
rion of 40 (a value recommended by Dragon
System’s software developers in the software
manual) were adapted to existing speech
models. Utterances for which the recognition
confidence was below criterion were rejected.
Training continued until confidence values
met or exceeded a value of 90 five times for
each nonsense word, regardless of whether
this value was met consecutively. The second
training phase ensured an adequate sampling
of each nonsense word and, as a result, a very
high degree of speech-recognition accuracy.
Completion of both phases of training lasted
approximately 5 min. Our informal evalua-
tions of recognition accuracy yielded no er-
rors across the range of utterances differing
in pitch, amplitude, and duration. Periodic
checks of speech-recognition accuracy re-
vealed that high accuracy was maintained
even after several weeks.

Naming procedure. Blocks of naming trials
began with the following instructions dis-
played on the computer screen:

During the next set of activities, your job will
be to correctly name the symbols. Each trial
will begin with the presentation of a symbol
positioned inside a blue box at the center of
the screen. If you know the correct name, say
it out loud. If you don’t know the correct
name, wait and the correct name will appear
on the screen—say it then. You can only earn
money, however, if you make a correct re-
sponse before it is displayed on the screen.
Press ‘‘S’’ when you are ready to start.

Each naming trial began with the presenta-
tion of a sample stimulus. If no vocal re-
sponse occurred within 20 s, students were
prompted to make the correct response with

the following message: ‘‘Please say the correct
name.’’ A correct response produced the
word ‘‘Correct’’ at the bottom of the screen
for 1 s along with a 50-ms 2000-MHz tone. An
incorrect response produced the word ‘‘In-
correct’’ at the bottom of the screen for 1 s
and a 50-ms 500-MHz tone. Responses that
were not among the set of experimenter-de-
fined responses were not considered either
correct or incorrect. Instead, those responses
were considered analogous to ‘‘off-key’’ press-
es that are possible during common condi-
tional discrimination tasks. Following such re-
sponses, students were prompted to make
another response with the following message
displayed on the screen: ‘‘Not recognized—
try again.’’ A response was designated as off
key when recognition confidence did not
meet a minimum criterion of 40. In the pres-
ent study, off-key responses rarely occurred.

After a recognized response occurred, the
screen was cleared except for an empty blue
stimulus box, and a variable 0-s to 2-s inter-
trial interval (ITI) was initiated. If a vocal re-
sponse occurred during the ITI, a 5-s delay
to the presentation of the next sample stim-
ulus resulted. Other responses during nam-
ing trials, including pressing the keys, had no
programmed consequences. Stimuli were
presented in a quasirandom sequence, with
the restriction that no stimulus appeared on
more than three consecutive trials. Students’
earnings and percentage correct were dis-
played on the screen following the comple-
tion of each trial block, except on test trials
when performance feedback was precluded.

Baseline training. A graded delayed-prompt
procedure was used to minimize the frequen-
cy of errors during initial training of new
name relations. The delay between the pre-
sentation of a sample stimulus and the display
of a written prompt for the correct (class-con-
sistent) response (e.g., ‘‘say JAS’’) was in-
creased gradually from 2 s to 5 s and then
was eliminated. Initial trial blocks began with
a 2-s delay between the onset of a stimulus
and the presentation of the response prompt
positioned approximately 2 cm below the
stimulus. When performance reached an ac-
curacy criterion (22 of 24 trials correct for
three consecutive trial blocks), the delay be-
tween the presentation of a stimulus and the
correct response was increased to 5 s until
performance again reached criterion. There-
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Table 1

Composition of trail blocks during baseline training and
tests of functional equivalence.

Phase

Trials of
each
type/

total per
block

Trial types
(stimulus →

response)

Baseline training
A-R 8/24 A1 → 1 (GOX)

A2 → 2 (TIF)
A3 → 3 ( JAS)

B-R 8/24 B1 → 1 (GOX)
B2 → 2 (TIF)
B3 → 3 ( JAS)

C-R 8/24 C1 → 1 (GOX)
C2 → 2 (TIF)
C3 → 3 ( JAS)

A-R, B-R, C-R mix 4/36 A1 → 1 (GOX)
A2 → 2 (TIF)
A3 → 3 ( JAS)
B1 → 1 (GOX)
B2 → 2 (TIF)
B3 → 3 ( JAS)
C1 → 1 (GOX)
C2 → 2 (TIF)
C3 → 3 ( JAS)

Test of functional equivalence
Function Change 1 8/24 A1 → 4 (YIZ)

A2 → 5 (VAM)
A3 → 6 (KEL)

Transfer Test 1 4/36 A1 → 4 (YIZ)
A2 → 5 (VAM)
A3 → 6 (KEL)
B1 → ?
B2 → ?
B3 → ?
C1 → ?
C2 → ?
C3 → ?

Function Change 2 4/36 A1 → 7 (DAK)
A2 → 8 (KOH)
A3 → 9 (MIV)

Transfer Test 2 4/36 A1 → 4 (DAK)
A2 → 5 (KOH)
A3 → 6 (MIV)
B1 → ?
B2 → ?
B3 → ?
C1 → ?
C2 → ?
C3 → ?

after, performance was assessed in the ab-
sence of response prompts.

Using the graded delayed-prompt proce-
dure, original baseline name relations were
taught in four stages (see baseline training in
Table 1). Initial trial blocks consisted of the
three A-R trial types (A1-1, A2-2, and A3-3),

each presented eight times per block. Upon
reaching the accuracy criterion of 22 of 24
trials correct for three consecutive trial
blocks, the training of B-R trial types (B1-1,
B2-2, and B3-3) and then C-R trial types (C1-
1, C2-2, and C3-3) proceeded in the same
manner. In the fourth stage of training, a mix
of A-R, B-R, and C-R trial types was presented
four times in each block, and until the stan-
dard accuracy criterion was met. Students
then were required to demonstrate accurate
performance (i.e., 22 of 24 trials correct) for
at least one trial block at each of four levels
of reduced feedback (e.g., 75%, 50%, 25%,
and 0% of trials).

Tests for functional equivalence. Interchange-
ability of stimulus functions was used to dem-
onstrate the establishment of functional
equivalence among the class members (Gol-
diamond, 1962, 1966). This was accom-
plished by training a new response to one
member of each class and then testing the
remaining class members for a correspond-
ing change in responding (i.e., transfer of
function).

Following the establishment of original
baseline name relations in baseline training,
the new Responses 4, 5, and 6 (YIZ, VAM, and
KEL) were introduced to the students’ vocab-
ulary. Students’ speech models were adapted
with new responses by repeating the speech-
recognition training procedure with the in-
clusion of Responses 4, 5, and 6. Following
speech-recognition training, speech models
now consisted of Responses 1 through 6, and
any of these responses were acceptable on
subsequent naming trials.

Following speech-recognition training, the
new Responses 4, 5, and 6 were reinforced in
the presence of Stimuli A1, A2, and A3, re-
spectively, using the graded delayed-prompt
procedure. Trial types (e.g., A1-4, A2-5, and
A3-6) were presented eight times each for a
total of 24 trials per block. Upon reaching the
accuracy criterion of 22 of 24 trials correct
for each of four levels of reduced feedback
(e.g., 75%, 50%, 25%, and 0% of trials), test
trials consisting of the A stimuli and each of
six B and C stimuli (e.g., B1, B2, B3, C1, C2,
and C3) were presented to test for transfer of
function. Each stimulus was presented four
times per block for a total of 36 trials. Test
blocks were conducted in the absence of per-
formance feedback.
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Table 2

Number of trial blocks in each phase of baseline training and tests of functional equivalence.

Phase

Students

S101 S102 S103 S104 S105 S106 S107 S108

Baseline training
A-R
B-R
C-R
A-R, B-R, C-R mix

11
10
10
7

9
9
9
7

10
9

10
7

10
9

10
7

10
10
10
7

10
10
9
7

9
10
10
7

13
10
10
8

Tests of functional equivalence
Function Change 1
Transfer Test 1

(criterion met?)
Function Change 2
Transfer Test 2

(criterion met?)

14
3

(no)
13
3

(no)

14
3

(no)
14
1

(yes)

14
3

(no)
14
2

(yes)

14
1

(no)
15
2

(yes)

14
1

(no)
14
1

(yes)

15
3

(no)
13
2

(yes)

14
2

(no)
14
3

(no)

14
3

(yes)

If transfer of function was not demonstrat-
ed, responses that were consistent with trans-
fer were reinforced until accuracy met or ex-
ceeded 90% accuracy for one trial block. This
procedure was planned because we did not
expect the stimuli to become part of a func-
tional class after one iteration of the function-
change procedure. In other research, either
repeated reversals have been necessary (e.g.,
Sidman, Wynne, Maguire, & Barnes, 1989;
Vaughan, 1988) or subjects have had an ex-
perimental history of matching to sample or
other class formation procedures (Layng &
Chase, in press). The function-change pro-
cedure then was repeated with three new Re-
sponses 7, 8, and 9 (DAK, KOH, and MIV)
that were reinforced in the presence of A
stimuli in the same manner described above.
When performance met the accuracy criteri-
on, test blocks that consisted of all A, B, and
C stimuli were presented again to test for
transfer of function.

RESULTS

Table 2 shows the number of trial blocks
required to reach criterion in each phase.
Naming performances met the accuracy cri-
terion after 9 to 13 trial blocks with each trial
type and seven to eight mixed blocks. In gen-
eral, the training procedure and stringent cri-
teria resulted in extensive practice and few
errors with each stimulus. When naming of
A1, A2, and A3 was altered in the first func-
tion-change phase from Responses 1, 2, and
3 to 4, 5, and 6, respectively, performances

met criterion after 14 to 15 trial blocks. As
the subsequent tests for a transfer of function
revealed, 7 of 8 students required a second
iteration of the function-change procedure
for transfer of function to B and C stimuli to
occur. In other words, even though these stu-
dents successfully altered their naming of A
stimuli using Responses 4, 5, and 6 (YIZ,
VAM, and KEL), they continued to name B
and C stimuli with the original Responses 1,
2, and 3 (GOX, TIF, and JAS). These students
required an additional function-change
phase followed by a second series of transfer
tests. The new Responses 7, 8, and 9 were
trained to A1, A2, and A3, respectively, and
then transfer of the new responses to B and
C stimuli was tested again. During this second
transfer test, transfer of function was dem-
onstrated in 5 of 7 students.

Figure 2 shows the proportion of responses
for Student S103 given each sample stimulus.
These data were chosen for illustration to
compare unsuccessful and successful transfer
of function performances. Differentiation of
responding occurred rapidly and with mini-
mal errors during A-R, B-R, and C-R phases
of training. The classes of stimuli A1B1C1,
A2B2C2, and A3B3C3 soon came to control
Responses 1, 2, and 3 (GOX, TIF, and JAS),
respectively. Differentiation was evident even
in the first trial block after new trial types
were introduced and was maintained
throughout the mixed trial blocks. The de-
layed-prompt training procedure likely con-
tributed to the rapid acquisition, which was
apparent with other students as well.
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Fig. 2. Proportions of each response type (depicted by number, 1, 2, 3, etc.) that occurred in the presence of
each stimulus for Student S103. Proportions are shown across successive trial blocks of each phase of baseline training
(A-R, B-R, C-R, and MIX), function changes (FCH), and tests for equivalence (T1 and T2). Shaded portions highlight
mixed-trial blocks of A-R, B-R, and C-R trial types during baseline training and tests for functional equivalence. Note
that class-consistent responding with Responses 4, 5, and 6 was reinforced (SR) prior to the second function-change
phase.
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The function changes involving the A stim-
uli also occurred rapidly. After some initial
disruption in the naming performances,
Stimuli A1, A2, and A3 soon came to control
the new Responses 4, 5, and 6 (YIZ, VAM, and
KEL), respectively. When transfer of Respons-
es 4, 5, and 6 was tested with B and C stimuli,
shown under the T1 phase in Figure 2, trans-
fer did not occur. This student, like most stu-
dents, continued to name B and C stimuli
with the original Responses 1, 2, and 3 (GOX,
TIF, and JAS). When reinforcement was de-
pendent on these responses in the presence
of B and C stimuli, this student’s responses
changed (see the SR phase in Figure 2).
When the functions of Stimuli A1, A2, and
A3 were changed again, the student respond-
ed consistently with new Responses 7, 8, and
9 (DAK, KOH, and MIV) (see the second
FCH phase in Figure 2). The final test for a
transfer of function, T2, shows that the B and
C stimuli also came to control the new Re-
sponses 7, 8, and 9, suggesting that distinct
functional equivalence classes were estab-
lished.

Other response parameters, such as sam-
ple–response speeds (inverse latency in sec-
onds), response duration, and software-gen-
erated confidence values, also were recorded.
Amplitude of response types in decibels was
recorded but is not presented here, because
this measure was found to be invariant across
all response types and phases of the study.
Figure 3 shows the median sample–response
speeds recorded for the same student (S103)
across training and test phases. In general,
sample–response speeds increased with in-
creased exposure to training trials, both dur-
ing initial baseline training and during func-
tion-change phases. Speeds also were
somewhat slower during the transfer tests
than during the previous training blocks.

Although the speech-recognition software
used in the present study was intended for
recognition of discrete utterances (i.e., only
a single utterance or word was recognized at
a time), speeds higher than one per second
were recorded for many utterances. This sug-
gests that speech recognition was not only ac-
curate but also fast. In fact, pilot data from
our laboratory have shown that recognition
rates of 60 utterances per minute are possible
when no delays (e.g., ITIs) are programmed
between successive response opportunities.

The speed of speech-recognition systems
opens new avenues of research that requires
rapid vocal responding, especially with newer
speech-recognition systems (e.g., Dragon
NaturallySpeakingt Developer Suite), which
are now capable of detecting and keeping
pace with continuous speech.

Figure 4 shows utterance duration for each
response type across phases for Student S103.
Most apparent was that duration correspond-
ed roughly to the topography of the utter-
ance. In other words, some utterances took
longer to say than others. For example, Re-
sponse 6 (KEL) took approximately 175 ms
to emit, compared to about 250 ms for Re-
sponse 5 (VAM) and 400 ms to 500 ms for
other responses such as 1, 3, and 4 (GOX,
JAS, and YIZ). No systematic differences were
found in utterance durations across training
and test phases. Despite using one-syllable
consonant-vowel-consonant nonsense words
in the present study, results showed that ut-
terance duration depended heavily on the
phonetic structure of the words. Therefore,
if duration of responding is to be taken as a
critical measure of responding, it is important
to take into account variations in the time it
takes to produce an utterance, and to choose
words that require similar production times.

Figure 5 shows the software-generated con-
fidence values for each response type across
phases of the study for Student S103. It is im-
portant to note that accuracy of utterance
recognition remained high throughout the
experiment. Variations in confidence values
merely represented the degree of variation
between the speech pattern of a recorded ut-
terance and the model. Variations in re-
sponse parameters including duration, am-
plitude, and even specific frequencies may
alter confidence values. Other factors may
also contribute, such as the number of words
in the software’s active vocabulary from which
a recorded utterance must be discriminated.
Confidence values may decrease if utterances
have to be compared to many speech models
in the active vocabulary. Furthermore, the
speech model for each word was adapted con-
tinually with each utterance to represent
slight variations in the way a word is spoken.

Confidence values for Responses 1, 2, and
3 (GOX, TIF, and JAS) decreased somewhat
from initial training to the mixed training
blocks. Confidence values for these same re-
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Fig. 3. Median sample–response speed (1/latency) of each response type (1, 2, 3, etc.) in the presence of each
stimulus for Student S103. Speeds are shown across successive trial blocks of each phase of baseline training (A-R, B-R,
C-R, and MIX), function changes (FCH), and tests for equivalence (T1 and T2). All other details as in Figure 2.
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Fig. 4. Median duration of each response type (1, 2, 3, etc.) in the presence of each stimulus for Student S103.
Durations are shown across successive trial blocks of each phase of baseline training (A-R, B-R, C-R, and MIX),
function changes (FCH), and tests for equivalence (T1 and T2). All other details as in Figure 2.
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Fig. 5. Median confidence value for each response type (1, 2, 3, etc.) in the presence of each stimulus for Student
S103. Confidence values are shown across successive trial blocks of each phase of baseline training (A-R, B-R, C-R,
and MIX), function changes (FCH), and tests for equivalence (T1 and T2). All other details as in Figure 2.
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sponses later increased during the first trans-
fer test (T1). The increase and the relatively
high confidence values for Responses 1
through 6 were most likely the result of re-
peating the speech-recognition training just
prior to the first function-change phase. Dur-
ing speech-recognition retraining, the origi-
nal Responses 1, 2, and 3 were retrained
along with new Responses 4, 5, and 6, which
were introduced and trained for the first
time. Retraining, as programmed in the pres-
ent experiment, recreated the speech models
for the original Responses 1, 2, and 3 from
scratch, thus removing accumulated varia-
tions in speech pattern that had been adapt-
ed to the models over time.

Systematic differences in confidence values
also occurred across different words. For ex-
ample, Figure 5 shows that confidence values
for Responses 7, 8, and 9 (DAK, KOH, and
MIV) were more variable than those for Re-
sponses 4, 5, and 6 (YIZ, VAM, and KEL).
Like differences recorded in utterance dura-
tion, the phonetic characteristics of these
words may have contributed to the software’s
level of confidence in discriminating utter-
ances.

DISCUSSION

The present results illustrate the use of
speech-recognition technology to study func-
tional equivalence, and extend the demon-
stration of functional equivalence among
stimuli to conditions in which shared vocal
responses define the stimulus classes. The re-
sults showed that utterances were discrimi-
nated accurately, and subtle changes in stim-
ulus functions were tracked during transition
states. The use of speech-recognition tech-
nology not only makes possible an analysis of
stimulus control relations involved in naming
but also ensures accurate recording and anal-
ysis of all vocal responses.

Speech-recognition technology has ad-
vanced rapidly in recent years. Several
speech-recognition software packages de-
signed for use by novice computer users are
now available. Currently, popular and inex-
pensive versions of speech-recognition soft-
ware are being shipped along with popular
word processing software (e.g., Corel
WordPerfectt).

Most of these software packages, however,

are intended for end users. Researchers in-
terested in incorporating speech recognition
into experimental protocols will require pack-
ages designed for software developers. At
present, we know of only a few commercial
products designed specifically for software de-
velopers: Dragon System’s Naturally-
Speakingt software development kit (SDK),
Lernout and Hauspie’s Voice XPressy SDK,
Microsoft’s Whisper Speech Recognizer SDK,
and IBM’s ViaVoicey SDK. The version of the
software by Dragon Systems that was used in
the present research has been replaced with
a Microsoft Windowst version that incorpo-
rates newer speech-processing algorithms
that make continuous-speech recognition
possible (i.e., no pauses are required between
utterances). The SDK software products that
are currently available typically make use of
ActiveX components that can be easily incor-
porated into user-developed software pro-
grams using development environments such
as Microsoft Visual Basic or Visual C11. A
modicum of programming skill appears to be
sufficient to incorporate simple speech-rec-
ognition capability into one’s research pro-
tocol. An intermediate to advanced level of
computer programming skill is recommend-
ed to extract more advanced measures (e.g.,
to extract the raw waveform of vocal utter-
ances, calculate the amplitude, or generate a
frequency spectrograph).

Other emerging technologies may further
advance the sophistication of speech-recog-
nition technology and encourage its use in
experimental research. The technology do-
main of ‘‘interactive voice response’’ is being
developed by leading software manufacturers.
For example, a software manufacturer’s con-
sortium that includes AT&T, IBM, Lucent,
and Motorola has developed Voice eXtensible
Markup Language (VoiceXML). VoiceXML is
an XML-based markup language that can be
used for distributed (i.e., networked) voice
applications, much as HTML is a language
for distributed visual applications. VoiceXML
is designed for applications that feature syn-
thesized speech, digitized audio, and recog-
nition or recording of spoken input. A similar
technology that sets standards for distributed
voice applications is available from the Micro-
soft Corporation (i.e., the Speech Application
Programming Interface; SAPI). These stan-
dards-based programs are likely to produce a
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reliable and ubiquitous speech-recognition
technology that may eventually replace other
types of computer interface elements (e.g.,
keyboards).

In conclusion, productive science is
marked by the development of effective mea-
surement. Speech-recognition technology has
advanced sufficiently to provide measures of
vocal responding that meet this criterion.
Many examples of interesting verbal behavior
discussed by Skinner (1957) and others
might be facilitated through the use of
speech-recognition technology. Some of
these include the automated recording and
transcribing of vocal responding that could
facilitate the analysis of the role of naming in
verbal behavior and in the formation of stim-
ulus classes (e.g., Horne & Lowe, 1996),
problem solving (e.g., Ericsson & Simon,
1984; Hayes, 1986), verbal self-reports (e.g.,
S. D. Lane & Critchfield, 1996), and even
nonhuman vocalizations (e.g., Manabe et al.,
1995). Speech recognition may be just the
measure the field has been waiting for to fur-
ther advance the science of verbal behavior.
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